3rd Edition

Probability and Statistics for Computer Scientists

By Michael Baron Copyright 2019
    486 Pages
    by Chapman & Hall

    Praise for the Second Edition:

    "The author has done his homework on the statistical tools needed for the particular challenges computer scientists encounter... [He] has taken great care to select examples that are interesting and practical for computer scientists. ... The content is illustrated with numerous figures, and concludes with appendices and an index. The book is erudite and … could work well as a required text for an advanced undergraduate or graduate course." ---Computing Reviews

    Probability and Statistics for Computer Scientists, Third Edition helps students understand fundamental concepts of Probability and Statistics, general methods of stochastic modeling, simulation, queuing, and statistical data analysis; make optimal decisions under uncertainty; model and evaluate computer systems; and prepare for advanced probability-based courses. Written in a lively style with simple language and now including R as well as MATLAB, this classroom-tested book can be used for one- or two-semester courses.

    Features:

    • Axiomatic introduction of probability
    • Expanded coverage of statistical inference and data analysis, including estimation and testing, Bayesian approach, multivariate regression, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap
    • Numerous motivating examples and exercises including computer projects
    • Fully annotated R codes in parallel to MATLAB
    • Applications in computer science, software engineering, telecommunications, and related areas

    In-Depth yet Accessible Treatment of Computer Science-Related Topics
    Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET).

    About the Author

    Michael Baron is David Carroll Professor of Mathematics and Statistics at American University in Washington D. C. He conducts research in sequential analysis and optimal stopping, change-point detection, Bayesian inference, and applications of statistics in epidemiology, clinical trials, semiconductor manufacturing, and other fields. M. Baron is a Fellow of the American Statistical Association and a recipient of the Abraham Wald Prize for the best paper in Sequential Analysis and the Regents Outstanding Teaching Award. M. Baron holds a Ph.D. in statistics from the University of Maryland. In his turn, he supervised twelve doctoral students, mostly employed on academic and research positions.

     1. Introduction and Overview
     Making decisions under uncertainty                      
     Overview of this book                              
     Summary and conclusions                               
     Exercises                                        

    I Probability and Random Variables

     2. Probability
     Events and their probabilities                         
     Outcomes, events, and the sample space                
     Set operations                              
     Rules of Probability                               
     Axioms of Probability                          
     Computing probabilities of events                   
     Applications in reliability                        
     Combinatorics                                  
     Equally likely outcomes                         
     Permutations and combinations                     
     Conditional probability and independence                   
     Summary and conclusions                               
     Exercises                                        

     3. Discrete Random Variables and Their Distributions
     Distribution of a random variable                       
     Main concepts                              
     Types of random variables                        
     Distribution of a random vector                        
     Joint distribution and marginal distributions             
     Independence of random variables                   
     Expectation and variance                            
     Expectation                                
     Expectation of a function                        
     Properties                                 
     Variance and standard deviation                    
     Covariance and correlation                       
     Properties                                 
     Chebyshev’s inequality                          
     Application to finance                          
     Families of discrete distributions                        
     Bernoulli distribution                          
     Binomial distribution                          
     Geometric distribution                          
     Negative Binomial distribution                     
     Poisson distribution                           
     Poisson approximation of Binomial distribution            
     Summary and conclusions                               
     Exercises                                        

     4. Continuous Distributions
     Probability density                               
     Families of continuous distributions                      
     Uniform distribution                           
     Exponential distribution                         
     Gamma distribution                           
     Normal distribution                           
     Central Limit Theorem                             
     Summary and conclusions                               
     Exercises                                        

     5. Computer Simulations and Monte Carlo Methods
     Introduction                                   
     Applications and examples                       
     Simulation of random variables                         
     Random number generators                       
     Discrete methods                             
     Inverse transform method                        
     Rejection method                             
     Generation of random vectors                      
     Special methods                             
     Solving problems by Monte Carlo methods                  
     Estimating probabilities                         
     Estimating means and standard deviations              
     Forecasting                                
     Estimating lengths, areas, and volumes                
     Monte Carlo integration                         
     Summary and conclusions                               
     Exercises                                        

    II Stochastic Processes
     
     6. Stochastic Processes
     Definitions and classifications                          
     Markov processes and Markov chains                     
     Markov chains                              
     Matrix approach                             
     Steady-state distribution                         
     Counting processes                               
     Binomial process                             
     Poisson process                              
     Simulation of stochastic processes                       
     Summary and conclusions                               
     Exercises                                        

     7. Queuing Systems
     Main components of a queuing system                     
     The Little’s Law                                 
     Bernoulli single-server queuing process                    
     Systems with limited capacity                      
     M/M/ system                                  
     Evaluating the system’s performance                  
     Multiserver queuing systems                          
     Bernoulli k-server queuing process                   
     M/M/k systems                             
     Unlimited number of servers and M/M/∞               
     Simulation of queuing systems                         
     Summary and conclusions                               
     Exercises                                        

    III Statistics
     
     8. Introduction to Statistics
     Population and sample, parameters and statistics              
     Descriptive statistics                               
     Mean                                   
     Median                                  
     Quantiles, percentiles, and quartiles                  
     Variance and standard deviation                    
     Standard errors of estimates                       
     Interquartile range                            
     Graphical statistics                               
     Histogram                                 
     Stem-and-leaf plot                            
     Boxplot                                  
     Scatter plots and time plots                       
     Summary and conclusions                               
     Exercises                                        

     9. Statistical Inference I
     Parameter estimation                              
     Method of moments                           
     Method of maximum likelihood                     
     Estimation of standard errors                      
     Confidence intervals                               
     Construction of confidence intervals: a general method        
     Confidence interval for the population mean              
     Confidence interval for the difference between two means      
     Selection of a sample size                        
     Estimating means with a given precision                
     Unknown standard deviation                          
     Large samples                               
     Confidence intervals for proportions                  
     Estimating proportions with a given precision             
     Small samples: Student’s t distribution                 
     Comparison of two populations with unknown variances       
     Hypothesis testing                                
     Hypothesis and alternative                       
     Type I and Type II errors: level of significance            
     Level _ tests: general approach                     
     Rejection regions and power                       
     Standard Normal null distribution (Z-test)              
     Z-tests for means and proportions                   
     Pooled sample proportion                        
     Unknown _: T-tests                           
     Duality: two-sided tests and two-sided confidence intervals      
     P-value                                  
     Inference about variances                            
     Variance estimator and Chi-square distribution            
     Confidence interval for the population variance            
     Testing variance                             
     Comparison of two variances F-distribution             
     Confidence interval for the ratio of population variances       
     F-tests comparing two variances                    
     Summary and conclusions                               
     Exercises                                        

     10. Statistical Inference II
     Chi-square tests                                 
     Testing a distribution                          
     Testing a family of distributions                    
     Testing independence                          
     Nonparametric statistics                            
     Sign test                                  
     Wilcoxon signed rank test                        
     Mann-Whitney-Wilcoxon rank sum test                
     Bootstrap                                     
     Bootstrap distribution and all bootstrap samples           
     Computer generated bootstrap samples                
     Bootstrap confidence intervals                      
     Bayesian inference                                
     Prior and posterior                            
     Bayesian estimation                           
     Bayesian credible sets                          
     Bayesian hypothesis testing                       
     Summary and conclusions                               
     Exercises                                        

     11. Regression
     Least squares estimation                            
     Examples                                 
     Method of least squares                         
     Linear regression                             
     Regression and correlation                        
     Overfitting a model                           
     Analysis of variance, prediction, and further inference            
     ANOVA and R-square                          
     Tests and confidence intervals                      
     Prediction                                 
     Multivariate regression                             
     Introduction and examples                       
     Matrix approach and least squares estimation             
     Analysis of variance, tests, and prediction               
     Model building                                  
     Adjusted R-square                            
     Extra sum of squares, partial F-tests, and variable selection     
     Categorical predictors and dummy variables              
     Summary and conclusions                               
     Exercises                                        

    IV Appendix
     
    12. Appendix

     Data sets                                     
     Inventory of distributions                            
     Discrete families                             
     Continuous families                           
     Distribution tables                                
     Calculus review                                 
     Inverse function                              
     Limits and continuity                          
     Sequences and series                           
     Derivatives, minimum, and maximum                 
     Integrals                                  
     Matrices and linear systems                           
     Answers to selected exercises                          

    Biography

    Michael Baron is a professor of statistics at the American University in Washington, DC. He has published two books and numerous research articles and book chapters. Dr. Baron is a fellow of the American Statistical Association, a member of the International Society for Bayesian Analysis, and an associate editor of the Journal of Sequential Analysis. In 2007, he was awarded the Abraham Wald Prize in Sequential Analysis. His research focuses on the use of sequential analysis, change-point detection, and Bayesian inference in epidemiology, clinical trials, cyber security, energy, finance, and semiconductor manufacturing. He received a Ph.D. in statistics from the University of Maryland.